5 Reasons to Adopt Digital Transformation in Farm Equipment Manufacturing Industry

An important success factor for farm equipment manufacturing companies is their ability to define and manufacture quality products tailored to customer preferences and deliver them anywhere in the world at record speed.

A farm equipment assembly can be very complex because it includes mechanical, electrical, hydraulic and pneumatic parts, sheet metal, cabling and automation mechanisms. Some 3D models can have more than 5,000 parts. It also consists of load-bearing frames that require structural analysis.

Need of the hour is to adopt the technology that uses single data driven approach, model-based product backbone that offers digital continuity and governance capabilities – from product engineering to manufacturing to service and maintenance – in one single repository to capitalize knowledge, intensify collaboration, improve productivity and stimulate innovation.

For some companies, digital transformation is a way to get closer to consumers, for others it means accelerating innovation or speeding time to market in order to stay closer to market trends. In any case, organizational process changes paired with modern technologies like PLM, Mobility, Cloud & SaaS can facilitate different ways of working.

download-button

The 5 main compelling reasons to adopt digital transformation are:

  1. Quick Decision-Making and Risk Reduction
  2. Today, organizations need to make quicker decisions and reduce risk at all times. It is important to implement a global, seamless governance also known as invisible governance to make sure all the administrative tasks are automated and transparent as much as possible. This will ensure faster, easier and safer decisions throughout the development cycle.

    5a

    Organizations are able to plan ahead more easily and also departments can collaborate effectively with the R&D department thereby reducing errors significantly. This reinforces the importance of combining processes and technology to manage development scope, resources, and schedule. When a project is being planned, resources, schedule, and scope are often managed to ensure the current state is not in flux.

    5b

    However, as the project proceeds, new information is gathered that causes adjustments to be made. Suddenly, having disconnected systems for scope, schedule or resources introduces uncertainty.

    If a single technology is used to manage a project’s scope, schedule, and resources, then the risks associated with uncertainty are diminished or avoided entirely.

  1. Improve Engineering Productivity
  2. To stay ahead of the latest innovations and market trends, companies must transition from traditional disconnected, discipline specific design and engineering bill of material processes to an approach that supports a single, fully consolidated approach. This helps in fully connected, global view of the combined product design structure and engineering bill of material with consistent global product development business processes.

    5c1

    It is important to manage the engineering definition of products from early definition to final validation in collaboration across disciplines and the value network.

    For this, all the engineering departments are required to be connected to the entire organization, sales, production, R&D, etc. Also, it is needed to integrate all the engineering disciplines in the design process seamlessly.

    5da

    Adopting the digital continuity platforms allows process engineers to co-design the product with product engineers, check consistency of assemblies and improve the process and product quality.

  1. Improve Collaboration among Cross-Functional Teams – Bringing Teams Together
  2. Working in silos between disciplines is a thing of the past. Digital team collaboration is a stimulus for innovation. Engineering teams need an essential set of tools for real-time, secure and structured collaboration on product content. Farm industry needs a scalable, online environment for managing product design, multi-physics simulation and manufacturing process planning with maximum traceability and flexibility.

    5e

    If the information is centrally managed and available to all stakeholders, it improves the competitiveness and resourcefulness to develop innovative products that rapidly respond to farmers’ evolving needs. Establishing a continuous digital thread across the entire product lifecycle empowers everyone to carry out their role to the best of their ability and build each machine first-time right.

  1. Enabling Validation through Virtual Twin
  2. By modelling all the parts in 3D and then sharing this 3D model with the factory ensures accurate assembly of parts. In product architecture, it is possible to represent the kinematics assemblies. It enables to create mobile parts in 3D and make sure they do not interfere with other parts when the assembly is in action. This approach also helps the design team handle changes effectively and rectify errors quickly.

    Thanks to virtual twin, the operators can easily understand assembly of new product variants and also get trained on new processes. It also enables plant managers to take right decisions regarding process schedule, material requirement and also plant maintenance. The customers can also view the products they ordered including all the various options even before it is produced.

    5f

  1. Improving Understanding and Training of Workforce
  2. Switching from 2D paper-based processes to 3D digital modelling has completely revolutionized the way today’s factory operators work. Previously, companies used to build a prototype assembly in a testing area to describe in 2D its assembly process, and sort this documentation in folders by product bill of materials. This 2D documentation was used for operator training and to update other operational documentation. Process updates were very complicated.

    5g

    With digital tools adoption, it is easy to simulate assembly operations with overviews, and carry out assembly tests even before the receipt of parts and without any physical prototype. It has become far easier for companies to train their operators and prepare them to work on new models.

    Today, with digital tools, we can run through the entire manufacturing process in detail, operators can be trained on the assembly processes before the product physically exists. When the operators visualize the product and factory model in 3D, they tend to quickly realize the new approach more clearly.

    Adoption of digital transformation is a lot about a strong passion to innovate and excel in your area of work, leveraging exciting new tools to increase collaboration and above all delivering on the objective to serve the customer with the best products.

Design Engineer Learning Curve and Career Path with EDST e-Learning

The Future of Working in Manufacturing

With Industrial Revolution 4.0, the nature of work is transforming with Artificial Intelligence (AI), Advanced Robotics, Cognitive Automation, Advanced Analytics and Internet of Things (IoT).

Advanced new age technology has created more jobs that require a unique skillset leading to the gap of available professionals specializing in these skillsets. To bridge this gap, it is important to educate the workforce of the future.

The future workforce is predicted to have collaborative platforms and instant messaging for high productivity. Digital Transformation in Business has rearranged the work architecture by cutting down routine tasks to focus on meaningful tasks that add value to the customers, end product, company, and the workforce.

EDST e-Learning aims to train the future workforce on the digital and soft skills required. The online courses are based on CAD software applications such as 3DEXPERIENCE platform, CATIA, INVENTOR, SOLIDWORKS, AutoCAD, REVIT and more. These courses are curated to train the workforce for engineering industries such as Aerospace, Automotive, Civil, Mechanical and other relevant fields.

Design Engineer Career Path

Industrial Design is an integration between the field of art and engineering that involves product design and management for manufacturing. Design engineers use Computer Aided Design (CAD) software to create, refine and test products and processes involving Computer Numerically Controlled (CNC) machines.

Design engineers formulate product design and refine the design with visual 3D models for streamlining efficiency throughout the manufacturing process. These engineers also test the assembly design and review the final product to ensure high quality and compliance with company, legal and customer standards. They work in a team of design engineers to boost the functionality in creating the final products within the time and cost constraints efficiently.

Design engineer core responsibilities include:

  • Interact with the R&D team to understand the design requirement
  • Use CAD software to transform ideas into plans and models
  • Collaborate with engineers and managers from different departments
  • Formulate and test product designs in prototypes
  • Refine ideas and designs to execute as per the change in requirements
  • Ensure the design and final product comply with industry standard and guidelines

In the era of digital transformation, design engineers have upgraded to 3D virtual design by using CAD software tools. Today, design engineers use the listed Visual 3D CAD software applications as per their design requirements.

  1. 3DEXPERIENCE
  2. CATIA V5
  3. INVENTOR
  4. SOLIDWORKS

Design Engineer Career Requirements

Degree Bachelors in Engineering for entry-level designers
Field Mechanical Engineering or relevant fields
Skills
  • Understanding of engineering concepts and the PLM process
  • Understanding 2D drafting, drawing & reading
  • Capability to create 3D parametric models using CAD software tools
  • Work with large assemblies having detailed design
  • Customer specific design process
  • Generate Bill of Materials
  • Creative analytical thinking for design and problem-solving
Tools INVENTOR, SOLIDWORKS, CATIA, 3DEXPERIENCE
Licenses Varied, minimum of five years of industry experience to attain Professional Engineers certification


If you want to Upskill yourself with EDST e-Learning courses, visit the learning portal here and register for a course today.

Abaqus Python Scripting for Beginners

Abaqus FEA is the software suite for computer-aided engineering and finite element analysis. It is used for a wide variety of material modeling simulations in aerospace, automotive and industrial product industries. Abaqus also has multiphysics, structural-pore and piezoelectric capabilities that are valuable for production simulations in various industries.

Abaqus Scripting is a useful high-level tool that combines the functionality of Abaqus’ Graphical User Interface (GUI) with the power of  Python. Abaqus’ Scripting Interface is an application programming interface (API) to modify the data and models in Abaqus. The scripts used in this interface are called Python Scripts.

Python Scripts allow users to perform tasks in Abaqus that would be complex or impossible within the Abaqus GUI. With a script, users can easily automate repetitive tasks, vary parameters of a simulation, extract information from a vast output database and also create a user interface with customized Abaqus’ user interface, hiding parts of the interface from non-FEA team members.

The basic principles of Abaqus Scripting are:

  • Create, modify and save the model
  • Create script files with the input files generated by Abaqus
  • Create output
  • Run the generated script files to redo the calculation
  • Create a different model and output by adjusting the script

To perform these tasks, it is important to have a basic understanding of the Python programming language. Leveraging EDS Technologies’ industry experience in Abaqus, readers can look forward to a series of future blogs on Python Scripting for Abaqus.

Python is a high-level, object-oriented scripting language with its first implementation by Guido van Rossum in 1989 at Centrum Wiskunde & Informatica (CWI), the National Research Institute for Mathematics and Computer Science in the Netherlands. Python is one of the most revered and oldest scripting languages, preferred by Engineers, Scientists, Mathematicians, and Researchers to turn the engineering and mathematical concepts into Applications.

The key features of Python will help beginners understand why Python is so popular and used for Abaqus scripting.

Features of Python:

  • Expressive: It is one of the more expressive programs meaning it is easy to read and understand. Reading through a Python code is similar to reading English but this feature of python enables the coder to concentrate on the solution than the programming language.
  • Large Standard Library: It has an extensive library including modules, expressions, unit testing, databases, GUI, and various other elements for rapid application development.
  • Free and Open Source: It is available for free on the Python website with the open-source code. This is the main reason that makes Python so popular and preferred as it is constantly improved by the community.
  • Portable: Due to the open-source feature, Python holds the capability to run on different platforms such as Windows, Linux, Unix, and Macintosh, etc making it a portable language.
  • GUI Programming: Graphical user interfaces are easily developed using Python. This is one of the key aspects of this language as it enables users to add flair to the program and make the results visually attractive. Also, it supports a wide array of graphic user interfaces that can be easily imported.

As per the ‘Zen of Python’, the philosophy of the Python programming language, simple is better than complex. This series on Python Scripting is to simplify the learning path for beginners and provide an informative resource for Abaqus users. EDS Technologies also provides on-site training for Abaqus customers. Contact us to know more about our training services.

 

ABAQUS: A Complete Solution for Realistic Simulation

A myriad of products have been changing and improving the facet of our lives, be it machines, vehicles, life sciences. The way products are engineered has been changing recently, being more human-centric. Vehicles are engineered to give optimal driving experience, autonomous vehicles that drive by themselves giving the owner the luxury and comfort, there are many wearable devices being engineered to monitor health etc. To achieve this, a lot of non-destructive testing needs to be done which is achieved very efficiently through virtual simulations. Dassault Systemes’ SIMULIA, a step ahead in virtual analysis, offers the virtual simulation landscape with a variety of simulation and optimisation software like Abaqus, Fe-Safe, I-sight etc. SIMULIA provides a multitude of multidisciplinary, multi-scale simulation applications for various industries such as Aerospace and Defence, Transportation and Mobility, Life-sciences, High tech, Energy and Materials, Industrial Equipment, Heavy engineering etc.

Below are some of the salient features of Abaqus from the SIMULIA portfolio:

  1. Abaqus/Standard provides Abaqus analysis technology to solve traditional implicit finite element analysis, including static, dynamic, and thermal analyses, all powered with the widest range of contact and nonlinear material options. Abaqus/Standard also has optional add-on and interface products that address design sensitivity analysis, offshore engineering, and integration with third-party software.
  2. Abaqus/Explicit provides analysis technology focused on transient dynamics and quasi-static analyses using explicit time integration, which is appropriate in many applications, such as drop tests, crushing, and manufacturing processes.
  3. Abaqus/CAE provides a complete modelling and visualization environment for Abaqus analysis products. With direct access to CAD models, advanced meshing and visualization, and with an exclusive view towards Abaqus analysis products, Abaqus/CAE is the modelling environment of choice for many Abaqus users.
  4. Abaqus/CFD provides advanced computational fluid dynamics capabilities with extensive support for pre- and post-processing provided in Abaqus/CAE. These scalable parallel CFD simulation capabilities address a broad range of nonlinear coupled fluid-thermal and fluid-structural problems.
  5. For implicit and explicit analysis, Abaqus has it all integrated. You can switch from explicit/implicit between analysis steps.
  6. Abaqus CAE GUI is very user-friendly, and the user can model a problem in a real – virtual manner.
  7. Abaqus can be used for both linear and non-linear analysis.

Staying on Top of Change

Just as humans develop from a single cell and end up with some 13 trillion cells by the time they’re born nine months later, so too do products start with a concept or definition—essentially a single data point.

Whether that definition is expressed as a design on paper or digitally, it represents data, explains Callum Kidd, lecturer and leading configuration management researcher at the University of Manchester, U.K. The data then evolves, matures, is iterated and eventually becomes a defined configuration, which is a collection of more data. That process turns out a product whose use, maintenance, quality and lifecycle may be monitored, generating still more data.

We have created a digital world and [have] become more and more adept at creating data. But we haven’t created awareness of managing data, from creation to disposal,” Mr. Kidd says.

Just as in the single-cell example above, “We create life in data from day one, not by adding in something along the way. True, nature has taken millions of years to perfect this, but we need to learn lessons faster if we are to manage products and systems through life effectively.”

86661501_thumbnailKeeping track of this process can be mind-boggling, due to the many changes along the way—and especially when it involves many partners, suppliers and sub-tier suppliers. This is where configuration management enters the scene.

Configuration management is how we define a configuration, which is essentially data at some level of maturity,” he says. “By evolving that data, and managing changes to it reflecting the evolution of its definition, we create physical structures, or systems. These, however, are just data represented in a physical form. Essentially, we manage [product] design and [product] definition data through life. The validated physical representation is merely proof that the data was valid.

Configuration management is like just-in-time [manufacturing] for data,” he adds. “It gets the right data in the right format to the right people at the right time.”

Configuration management is closely linked with product lifecycle management, or PLM, which follows a product from concept to disposal. But “that’s a one-dimensional, linear view of the world,” Mr. Kidd says. “In reality, we share information backward and well as forward.”

Taking the aerospace industry as an example, “it’s highly possible that due to complex work-share arrangements, we could be managing changes in the design, manufacture and support phases of the life cycle concurrently,” Mr. Kidd says. “This adds considerable complexity in managing the status of data at any point in time. We need to know exactly what we have if we are to manage changes to that data effectively. That is one of our greatest challenges in a modern business environment.”

A survey of more than 500 companies last year, Aberdeen Group, a technology, analytics and research firm based in Waltham, Massachusetts, found that for many companies configuration management remains a manual, handwritten process. Aberdeen separated the companies into “leaders” and “followers,” and found that only 54% of leaders and a mere 37% of followers had automated or digital change management.

Yet, keeping track of frequent engineering changes during the development process is the top challenge, cited by 38% of companies. Among industrial equipment manufacturers, 46% named frequent engineering changes as their biggest challenge.

Changes are amplified by the increased complexity of products themselves. In another report, published in 2015, Aberdeen found a 13.4% increase in the number of mechanical components, a 19.6% climb in the number of electrical components and a 34.4% rise in lines of software code over the previous two years.

“Especially for industrial equipment manufacturers, products are getting more complex and customizable,” says Nick Castellina, vice president and research group director at Aberdeen Group. “Configuration management helps manage the flow of all that data and the lifecycle and needs of the shop floor. It centralizes all the visibility into the needs of each new product being built and how that interacts with any materials you’re trying to get at any stage.”

Visibility is important, because “sometimes it’s the minutest of things that can cause the biggest failures of all,” Mr. Kidd says. Automated configuration management not only ensures that all changes are recorded, along with the reasoning behind them, but also serves as a record in the future of every decision that was made in respect of a configuration’s life.

Businesspeople working togetherChange boards, which gather the relevant stakeholders, are the primary mechanism for approving change in configuration management. These boards are dealing with greater volume of change and complexity of the impact. That’s why “every piece of information in that room is retained and digitized. Notes that somebody makes but doesn’t communicate may be relevant,” Mr. Kidd says. Even emails are archived.

“We live in a litigious society,” he says. “Configuration management can prove you did the right thing, even if in the future a decision is called into question. You can show you made decisions based on the best possible information, and in the knowledge that you understood the status of the configuration at that point—in short, proving that you took due diligence in the process.”

Subscribe to our newsletter

Get all the latest information on Events, Sales and Offers.